柔性传感技术  052M6036H

学期:2017—2018学年(春)第二学期 | 课程属性:专业研讨课 | 任课教师:徐云
授课时间: 星期四, 第5、6、7节
授课地点: 教1-311
授课周次: 2、3、4、6、7、8、9、10
课程编号: 052M6036H 课时: 20 学分: 1.0
课程属性: 专业研讨课 主讲教师:徐云
英文名称: Technology of flexible sensors

教学目的、要求

本课程为材料,光学,电子等相关学科研究生的专业讨论课。本课程将对柔性混合制造技术科学发展的基本情况进行介绍,包括柔性材料与器件的材料与器件物理、主要的表征方法和制备方法,以及柔性材料与器件的光学,电学,磁学,热学和力学等物理学性能方面的内容,并讨论分析柔性器件制备技术和传感技术应用的一些当前研究热点,重点关注基本概念、原理以及一些新的研究发现。通过本课程的学习,使学生对柔性传感技术中的材料、器件有比较广泛的了解,初步掌握其前沿研究领域情况,为以后从事柔性传感与信息处理相关的科研工作打下基础。

预修课程

力学、材料学,普通物理或器件物理

教 材

主要内容

第1章 绪论
柔性技术发展史以及柔性传感材料、器件、系统主要研究内容介绍
第2章  无机集成器件的可延展柔性化设计理论与体系构建
第3章  可延展无机集成器件的超柔性衬底材料物理
第4章  柔性异质界面对载流子输运及器件电子学性能的调控机理
第5章  可延展柔性无机集成器件性能退化机理及分析表征方法
第6章  柔性混合电子制备技术
第7章  医疗健康应用的可延展柔性器件
第8章  可延展柔性器件的其它应用

参考文献

[1]. W.-M. Choi, J. Z. Song, D.-Y. Khang, H. Q. Jiang, Y. Huang, and J. A. Rogers. Biaxially stretchable ‘wavy’ silicon nanomembranes. Nano Letters 7: 1655-1663, 2007. 
 [2]. X. Feng, B. D. Yang, Y. M. Liu, ,Y. Wang, C. Dagdeviren, Z. J. Liu, A. Carlson, J. Y. Li, Y. Huang, J. A. Rogers. Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano 5: 3326-3332, 2011. 
[3]. D.-H. Kim, J. Z. Song, W.-M. Choi, H.-S. Kim, R.-H. Kim, Z. J. Liu, Y. Huang, K.-C. Hwang, Y. W. Zhang, and J. A. Rogers. Materials and non-coplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proceedings of the National Academy of Sciences of the United States of America 105: 18675-18680, 2008. 
[4]. J. Yoon, A. J. Baca, S.-I. Park, E. Paulius, J. B. III Geddes, L. Li, R. H. Kim, J. L. Xiao, S. D. Wang, T. H. Kim, M. J. Motala, B. Y. Ahn, E. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nature Materials 7: 907-915, 2008. 
[5]. D.-H. Kim, Y.-S. Kim, J. Wu, Z.J. Liu, J.Z. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, and J.A. Rogers. Ultrathin silicon circuits with strain isolation layers and mesh layouts for high performance electronics on fabric, vinyl, leather and paper. Advanced Materials 21: 1-5, 2009. 
 [6]. J. Z. Song, H. Q. Jiang, W.-M. Choi, D.-Y. Khang, Y. Huang, and J. A. Rogers. An analytical study of two-dimensional buckling of thin films on compliant substrates. Journal of Applied Physics 103: 014303, 2008. 
 [7]. J. Lee, J. Wu, M. Shi, J. Yoon, S.-I. Park, M. Li, Z. Liu, Y. Huang and J. A. Rogers. Stretchable GaAs photovoltaics with designs that enable high areal coverage. Advanced Materials 23: 986-991, 2011. 
[8]. J. Lee, J. Wu, J.H. Ryu, Z. Liu, M. Meitl, Y.-W. Zhang, Y. Huang and J.A. Rogers. Stretchable semiconductor technologies with high areal coverages and strain limiting behavior: demonstration in high efficiency dual junction gainp/gaas photovoltaics. Small 8: 1851-1856, 2012. 
[9]. Y. Huang, H. Chen, J. Wu, X. Feng. Controllable wrinkle configurations by soft micropatterns to enhance the stretchability of Si ribbons. Soft Matter 10: 2559-2566, 2014. 
[10]. A. Kumar, and G. M. Whitesides. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching. Applied Physics Letters 63: 2002-2004, 1993. 
[11]. A. Kumar, and G. M. Whitesides. Patterned condensation figures as optical diffraction gratings. Science 263: 60-62, 1994. 
[12]. O. Fakhr, P. Altpeter, K. Karrai, P. Lugli. Easy fabrication of electrically insulating nanogaps by transfer printing. Small 7: 2533-2538, 2011. 
[13]. D. Guerin, C. Merckling, S. Lenfant, X. Wallart, S. Pleutin, and D. Vuillaume. Silicon-molecules-metal junctions by transfer printing: chemical synthesis and electrical properties. The Journal of Physical and Chemistry C 111: 7947-7956, 2007. 
[14]. C.-H. Chen and Y.-C. Lee. Contact printing for direct metallic pattern transfer based on pulsed infrared laser heating. Journal of Micromechanics and Microenging 17: 1252-1256, 2007. 
[15]. M. J. Allen, V. C. Tung, L. Gomez, Z. Xu, L.-M. Chen, K. S. Nelson, C. Zhou, R. B. Kaner, and Y. Yang. Soft transfer printing of chemically converted graphene. Advanced Materials 21: 2098-2102, 2009. 
[16]. M. A. Meitl, Z.-T Zhu., V. Kumar, K. J. Lee, X. Feng, Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Materials 5: 33-38, 2006. 
[17]. X. Feng, M. A. Meitl, A. M. Bowen, Y. Huang, R. G. Nuzzo, J. A. Rogers. Competing fracture in kinetically Controlled transfer printing. Langmuir 23: 12555-12560, 2007. 
[18]. H. Chen, X. Feng, Y. Huang, Y. G. Huang, J. A. Rogers. Experiments and viscoelastic analysis of peel test with patterned strips for applications to transfer printing. Journal of the Mechanics and Physics of Solids 61: 1737-1752, 2013. 
[19]. S. Y. Yang, A. Carlson, H. Cheng, Q. Yu, N. Ahmed, J. Wu, S. Kim, M. Sitti, P. M. Ferreira, Y. Huang and J. A. Rogers. Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications. Advanced Materials 24: 2117-2122, 2012. 
[20]. J. Wu, S. Kim, W. Chen, A. Carlson, K.-C. Hwang, Y. Huang, and J. A. Rogers. Mechanics of reversible adhesion. Soft Matter 7: 8657, 2011.